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ABSTRACT
The use of swarm technologies has become prevalent in a variety
of application domains: medical, bioinformatics, military/defense,
surveillance, even internet television broadcasting. Future NASA
missions will exploit such technologies to enable spacecraft to be
sent where heretofore it was impossible, to ensure greater pro-
tection of space assets, and to increase the likelihood of mission
success. We describe some of the basic concepts of swarms, and
discuss the requirements of a formal method suitable for use with
swarm-based systems. We also present some findings of our FAST
(Formal Approaches to Swarm Technologies) project, which is at-
tempting to identify a suitable integrated formal method for this
task.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal Methods; D.2.1
[Requirements/Specifications]: methodologies

General Terms
Design, Verification

Keywords
formal methods, verification, integrated/hybrid methods, swarms

1. INTRODUCTION
We are all familiar with swarms in nature. The mere mention of

the word “swarm” conjures up images of large groupings of small
insects, such as bees (apiidae) or locusts (acridiidae), each insect
having a simple role, but with the swarm as a whole producing
complex behavior [17].

Strictly speaking, such emergence of complex behavior is not
limited to swarms, and we see similar complex social structures
occurring with higher order animals and insects that don’t swarm
per se: colonies of ants, flocks of birds, packs of wolves, etc. These
groupings behave like swarms in many ways. With wolves, for
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example, the elder male and female (alpha male and alpha female)
are accepted as leaders who communicate with the pack via body
language and facial expressions. Moreover, the alpha male marks
the territory of the pack, and excludes wolves that are not members
of the pack.

The idea that swarms can be used to solve complex problems
has been taken up in several areas of computer science, which we
will briefly introduce in Section 2. The term “swarm” in this pa-
per refers to a large grouping of simple components working to-
gether to achieve some goal and produce significant results. The
term should not be taken to imply that these components fly (or are
airborne); they may equally well be on the surface of the Earth, un-
der the surface, under water, or indeed operating on other planets.

We will describe NASA’s motivation for using swarms in future
exploration missions. We will describe one particular mission, cur-
rently in the concept stage, and examine why this (and similar sys-
tems) must exhibit autonomic properties [17].

2. SWARMS AND INTELLIGENCE
Swarms consist of a large number of simple entities that have

local interactions (including interactions with the environment) [2].
The result of the combination of simple behaviors (the microscopic
behavior) is the emergence of complex behavior (the macroscopic
behavior) and the ability to achieve significant results as a “team”
[4].

Intelligent swarm technology is based on swarm technology. The
individual members of the swarm also exhibit independent intelli-
gence [3]. With intelligent swarms, members of the swarm may be
heterogeneous or homogeneous. Even if members start as homoge-
neous, due to their differing environments, they may learn different
things, develop different goals, and therefore become a heteroge-
neous swarm. Intelligent swarms may also be made up of hetero-
geneous elements from the outset, reflecting different capabilities
as well as a possible social structure.

Agent swarms are being used as a computer modeling technique
and have also been used as a tool to study complex systems [15].
Examples of simulations that have been undertaken include swarms
of birds [6, 24], as well as business and economics [23], and eco-
logical systems [30].

In swarm simulations, each of the agents is given certain param-
eters that it tries to maximize. In terms of bird swarms, each bird
tries to find another bird to fly with, and then flies off to one side and
slightly higher to reduce its drag. Eventually the birds form flocks.
Other types of swarm simulations have been developed that ex-
hibit unlikely emergent behavior. These emergent behaviors are the
sums of often simple individual behaviors, but, when aggregated,
form complex and often unexpected behaviors. Swarm behavior



is also being investigated for use in such applications as internet-
based television broadcasting, telephone switching, network rout-
ing, data categorizing, and shortest path optimizations.

Swarm intelligence techniques (note the slight difference in ter-
minology from “intelligent swarms”) are population-based stochas-
tic methods used in combinatorial optimization problems, where
the collective behavior of relatively simple individuals arises from
their local interactions with their environment to give rise to the
emergence of functional global patterns. Swarm intelligence rep-
resents a metaheuristic approach to solving a wide variety of prob-
lems.

Swarm robotics refers to the application of swarm intelligence
techniques to the analysis of swarms where the embodiment of the
“agents” is as physical robotic devices.

3. NASA SWARM TECHNOLOGIES
Future NASA missions will exploit new paradigms for space ex-

ploration, heavily focused on the (still) emerging technologies of
autonomous and autonomic systems [35, 36]. Traditional mission
concepts, reliant on one large spacecraft, are being complemented
with mission concepts that involve several smaller spacecraft, op-
erating in collaboration, analogous to swarms in nature. This of-
fers several advantages: the ability to send spacecraft to explore
regions of space where traditional craft simply would be imprac-
tical, greater redundancy (and, consequently, greater protection of
assets), and reduced costs and risk, to name but a few. Planned
missions entail the use of several unmanned autonomous vehicles
(UAVs) flying approximately one meter above the surface of Mars,
which will cover as much of the surface of Mars in three seconds as
the now famous Mars rovers did in their entire time on the planet;
the use of armies of tetrahedral walkers to explore the Martian and
Lunar surface; constellations of satellites flying in formation; and
the use of miniaturized pico-class spacecraft to explore the asteroid
belt.

These new approaches to exploration missions simultaneously
pose many challenges. The missions will be unmanned and neces-
sarily highly autonomous. They will also exhibit the classic proper-
ties of autonomic systems, being self-protecting, self-healing, self-
configuring, and self-optimizing. Many of these missions will be
sent to parts of the solar system where manned missions are simply
not possible, and to where the round-trip delay for communications
to spacecraft exceeds 40 minutes, meaning that the decisions on re-
sponses to problems and undesirable situations must be made in
situ rather than from ground control on Earth. The degree of au-
tonomy that such missions will possess would require a prohibitive
amount of testing in order to accomplish system verification. Fur-
thermore, learning and adaptation towards continual improvements
in performance will mean that emergent behavior patterns simply
cannot be fully predicted through the use of traditional system de-
velopment methods. The result is that formal specification tech-
niques and formal verification will play vital roles in the future de-
velopment of NASA space exploration missions.

3.1 ANTS: A Concept Mission
Automomous Nano Technology Swarm (ANTS) is a joint NASA

Goddard Space Flight Center and NASA Langley Research Center
collaboration to develop revolutionary mission architectures and
exploit artificial intelligence techniques and paradigms in future
space exploration. The mission will make use of swarm technolo-
gies for both spacecraft and surface-based rovers.

ANTS consists of a number of concept missions:

SARA: The Saturn Autonomous Ring Array will launch 1000 pico-

class spacecraft, organized as ten sub-swarms, each with spe-
cialized instruments, to perform in situ exploration of Sat-
urn’s rings, by which to understand their constitution and
how they were formed. The concept mission will require
self-configuring structures for nuclear propulsion and con-
trol, which lies beyond the scope of this paper. Addition-
ally, autonomous operation is necessary for both maneuver-
ing around Saturn’s rings and collision avoidance.

PAM: Prospecting Asteroid Mission will also launch 1000 pico-
class spacecraft, but here with the aim of exploring the aster-
oid belt and collecting data on particular asteroids of interest.
PAM is described below in Section 3.1.1.

LARA: ANTS Application Lunar Base Activities will exploit new
NASA-developed technologies in the field of miniaturized
robotics, which may form the basis of remote landers to be
launched to the moon from remote sites, and may exploit
innovative techniques (described below in Section 3.1.2) to
allow rovers to move in an amoeboid-like fashion over the
moon’s uneven terrain.

Since SARA and PAM have many issues in common (as regards
autonomous operation), we will concentrate on PAM in the fol-
lowing. Section 3.1.2 describes the unique technologies that are
planned for the LARA (and other) concept missions.

3.1.1 PAM
The ANTS PAM (Prospecting Asteroid Mission) concept mis-

sion [10, 11, 35, 36] will involve the launch of a swarm of au-
tonomous pico-class (approximately 1kg) spacecraft that will ex-
plore the asteroid belt for asteroids with certain characteristics.

Figure 1 gives an overview of the PAM mission concept [35]. In
this mission, a transport ship, launched from Earth, will travel to a
point in space where gravitational forces on small objects (such as
pico-class spacecraft) are all but negligible. From this point, termed
a Lagrangian, 1000 spacecraft, which will have been assembled en
route from Earth, will be launched into the asteroid belt. As much
as 60 to 70 percent of them are expected to be lost during the mis-
sion, primarily because of collisions with each other or with an as-
teroid during exploration operations, since, having only solar sails
to provide thrust, their ability to maneuver will be severely lim-
ited. Because of their small size, each spacecraft will carry just one
specialized instrument for collecting a specific type of data from
asteroids in the belt. Approximately 80 percent of the spacecraft
will be workers that will carry the specialized instruments (e.g., a
magnetometer or an x-ray, gamma-ray, visible/IR, or neutral mass
spectrometer) and will obtain specific types of data. Some will be
coordinators (called leaders) that have rules that decide the types
of asteroids and data the mission is interested in and that will co-
ordinate the efforts of the workers. The third type of spacecraft are
messengers that will coordinate communication between the rulers
and workers, and communications with the Earth ground station.

The swarm will form sub-swarms under the control of a ruler,
which contains models of the types of science that it wants to per-
form. The ruler will coordinate workers, each of which uses its
individual instrument to collect data on specific asteroids and feed
this information back to the ruler, who will determine which aster-
oids are worth examining further. If the data matches the profile
of a type of asteroid that is of interest, an imaging spacecraft will
be sent to the asteroid to ascertain the exact location and to cre-
ate a rough model to be used by other spacecraft for maneuvering
around the asteroid. Other teams of spacecraft will then coordinate
to finish mapping the asteroid to form a complete model.
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Figure 1: NASA’s Autonomous Nano Technology Swarm
(ANTS) mission scenario.

3.1.2 SMART
The ANTS SMART (Super Miniaturized Addressable Reconfig-

urable Technology) architectures were initiated at Goddard Space
Flight Center (GSFC) to develop new kinds of structures capable
of:

• goal-oriented robotic motion,

• changing form to optimize function (morphological capabil-
ities),

• adapting to new environmental demands (learning and adap-
tation capabilities), and

• repairing-protecting itself (autonomic capabilities).

The basic unit of the structures is a tetrahedron (Figure 2) con-
sisting of four addressable nodes interconnected with six struts that
can be reversibly deployed or stowed. More complex structures
are formed from interconnecting these reconfigurable tetrahedra,
making structures that are scalable, and leading to massively par-
allel systems. These highly-integrated 3-dimensional meshes of
actuators/nodes and structural elements hold the promise of pro-
viding a new approach to robust and effective robotic motion. The
current working hypothesis is that the full functionality of such a
complex system requires fully autonomous intelligent operations at
each node.

The tetrahedron (tet) “walks” by extending certain struts, chang-
ing its center of mass and “falling” in the desired direction. As the
tetrahedral structure “grows” by interfacing more and more tets,
the falling motion evolves to a smoother walking capability, i.e.,
the smoother walking-climbing-avoiding capabilities emerge from
the orchestration of the capabilities of the tetrahedra involved in the
complex structure.

Currently, the basic structure, the tetrahedron, is being modeled
as a communicating and cooperating/collaborating four-agent sys-
tem with an agent associated with each node of the tetrahedon. An
agent, in this context, is an intelligent autonomous process capa-
ble of bi-level deliberative and reactive behaviors with an interven-
ing neural interconnection (the structure of the neural basis func-
tion [9]). The node agents also possess social and introspective
behaviors. The problem to be solved is to scale this model up to

NodeStrut

Figure 2: Basic unit of tetrahedral structures.

one capable of supporting autonomous operation for a 12-tet rover
(a structure realized by the integration of 12 tets in a polyhedral
structure). The overall objective is to achieve autonomous robotic
motion of this structure. (See http://ants.gsfc.nasa.gov to view ani-
mations of the tetrahedon-based walking capabilities currently be-
ing modeled as multi-agent systems.)

3.2 Other NASA Swarm-Based Missions
An autonomous space exploration system is currently under de-

velopment at Virginia Tech, funded by the NASA Institute for Ad-
vanced Concepts (NIAC).

The system consists of a swarm of low altitude, buoyancy-driven
gliders for terrain exploration and sampling, a buoyant oscillating
wing that absorbs wind energy, and a docking station that can be
used to anchor the energy absorber, charge the gliders, and serve as
a communications relay.

The work builds on success with underwater gliders currently
used for oceanography research. The intent is to develop low-cost
planetary exploration systems that can run autonomously for years
in harsh environments such as in the sulfuric acid atmosphere of
Venus, or on Titan (the largest of Saturn’s moons).

3.3 NASA Constellations
We may consider constellations—several spacecraft flying to-

gether in formation—to be a special case of swarms.
The ST5 mission, for example, which is scheduled for Spring

2006, will launch three identical spacecraft that will fly in a “string
of pearls” formation, utilizing a single uplink/downlink to earth.
While a mission based on three spacecraft cannot be expected to
perform highly distributed work as envisaged in ANTS, for exam-
ple, it is certainly possible for the large spacecraft (or satellites) to
be used in a constellation.

Indeed, this is the approach taken in the NASA Constellation-
X mission. Constellation-X involves the use of a small number of
telescopes (currently four), in formation and working together to
give the equivalent of a single X-ray telescope for observing black
holes and other X-ray sources with greater resolution than possible
before [17].

4. OTHER APPLICATIONS OF SWARMS
The behavior of swarms of bees has been studied as part of the

BioTracking project at Georgia Tech [1]. To expedite the under-
standing of the behavior of bees where large scale robust behavior
emerges from the simple behavior of individuals, the project video-
taped the behavior of bees over a period of time, using a computer
vision system to analyze data on sequential movements that bees
use to encode the location of supplies of food, etc. The intention is



that such models of bee behavior can be used to improve the orga-
nization of cooperating teams of simple robots capable of complex
operations. A key point is that the robots need not have a priori
knowledge of the environment, nor is there direct communication
between robots in the teams.

Research at Penn State University has focused on the use of par-
ticle swarms for the development of quantitative structure activity
relationships (QSAR) models used in the area of drug design [7].
The research created models using artificial neural networks and k-
nearest neighbor and kernel regression. Binary and niching particle
swarms were used to solve feature selection and feature weighting
problems.

Particle swarms have influenced the field of computer animation
also. Rather than scripting the path of each individual bird in a
flock, the Boids project [24] elaborates a particle swarm with the
simulated birds being the particles. The aggregate motion of the
simulated flock is much like that in nature: it is the result of the
dense interaction of the relatively simple behaviors of each of the
(simulated) birds, where each bird chooses its own path.

Much success has been reported from the use of Ant Colony Op-
timization, a technique that studies the social behaviors of colonies
of ants, and uses these behavior patterns as models for solving dif-
ficult combinational optimization problems [13]. The study of ants
and their ability to find shortest paths has lead to ACO solutions
to the traveling salesman problem, as well as network and internet
optimizations [12, 13].

Work at University of California Berkeley is focusing on the use
of networks of Unmanned Underwater Vehicles (UUVs). Each
UUV has the same template information, containing plans, sub-
plans, etc., and relies upon this and its own local situation map
to make independent decisions, which will result in cooperation
between all of the UUVs in the network. Experiments involving
strategies for group pursuit will be conducted in a shallow water
pool.

4.1 Verifying Swarms
As mission software becomes more complex, testing and error-

finding also become more difficult. This is especially true of highly
parallel processes and distributed computing, both being character-
istic of swarm-based systems.

Race conditions in these systems can rarely be found by in-
putting sample data and checking whether the results are correct.
These types of errors are time-based and only occur when processes
send or receive data at particular times, or in a particular sequence,
or after learning occurs. To find these errors through testing, the
software processes involved have to be executed in all possible
combinations of states (state space) that the processes could collec-
tively be in. Because the state space is exponential in the number
of states, it becomes untestable with a relatively small number of
elements in the swarm. Traditionally, to get around the state-space
explosion problem, testers have artificially reduced the number of
states of the system and approximated the underlying software us-
ing models.

Formal methods are proven approaches for ensuring the correct
operation of complex interacting systems. Once written, a formal
specification can be used to prove properties of a system correct
and check for particular types of errors (e.g., race conditions), and
can be used as input to a model checker. Verifying emergent be-
havior is one area that, unfortunately, most formal methods have
not addressed well.

The FAST (Formal Approaches to Swarm Technologies) project
surveyed formal methods techniques to determine whether any may
be suitable for verifying swarm-based systems and their emergent

behavior [28, 29]. The project found that there are a number of
formal methods that support the specification of either concurrency
or algorithms, but not both. Though there are a few formal methods
that have been used to specify swarm-based systems, the project
found only two formal approaches that were used to analyze the
emergent behavior of swarms.

Weighted Synchronous Calculus of Communicating Systems
(WSCCS), a process algebra, was used by Tofts to model social in-
sects [34], and by Sumpter, et al., to analyze the non-linear aspects
of social insects [33]. X-Machines have been used to model cell bi-
ology [19, 20], and with modifications, the X-Machines model has
potential for specifying swarms. Simulation approaches are being
investigated to determine emergent behavior [15]. However, these
approaches do not predict emergent behavior from the model, but
rather model the emergent behavior after the fact.

The project has defined an integrated formal method, which is
appropriate for the development of swarm-based systems [26]. Fu-
ture work will concentrate on the application of the method in order
to demonstrate its usefulness, and on the development of appropri-
ate support tools.

5. PROPERTIES OF AN EFFECTIVE
INTEGRATED FORMAL METHOD FOR
SWARM TECHNOLOGIES

An effective formal method must be able to predict the emergent
behavior of 1000 agents as a swarm, as well as the behavior of the
individual agent. Crucial to the mission will be the ability to mod-
ify operations autonomously to reflect the changing nature of the
mission and the distance and low bandwidth communications back
to Earth. For this, the formal specification will need to be able to
track the goals of the mission as they change, and to modify the
model of the universe as new data comes in. The formal specifica-
tion will also need to allow for specification of the decision making
process to aid in the determination of which instruments will be
needed, at what location, with what goals, etc.

Once written, the formal specification to be developed must be
able to be used to prove properties of the system correct (e.g., the
underlying system will go from one state to another or not into a
specific state), check for particular types of errors (e.g. race condi-
tions), as well as be used as input to a model checker.

From this we can see that the formal method must be able to
track the models of the leaders and it must allow for decisions to be
made as to when the data collected has met the goals. The ANTS
mission details are still being determined and are changing as more
research is performed. Therefore, the formal method must be flexi-
ble enough to allow for efficient changes and re-prediction of emer-
gent behavior.

Bearing all of this in mind, the following list summarizes the
properties necessary for effective specification and emergent be-
havior prediction of the ANTS swarm and other swarms, and looks
to the existing formal methods to provide some of the desired prop-
erties.

Process representation: Processes can be specified using the var-
ious manifestations of transition functions.

Reasoning: Other forms of possibly non-standard logics may need
to be employed to allow for intelligent reasoning with uncer-
tain and possibly conflicting information.

Choosing Action Alternatives: A means of expressing probabili-
ties and frequencies of events (as in WSCCS) is most benefi-
cial in choosing between different enabled actions. A modi-



fied version of the WSCCS ability may be used to supply an
algebra for choosing between possible actions.

Asynchronous messaging: Asynchronous messaging will need to
be supported, as this is the most common type of messag-
ing in swarm applications. This is not a significant problem
as most synchronous messaging is implemented via asyn-
chronous “handshakes”. There are variants of CSP and other
process algebras that support asynchronous messaging, ei-
ther by having all processes be receptive (as in Receptive
Process Theory), or through infinite buffering as in ACSP.

Message buffering: Message buffering may be needed due to the
possibly asynchronous nature of messaging between mem-
bers of the swarm. Several asynchronous variants of CSP
achieve this through infinite buffering.

Concurrent agent states for each spacecraft: This requirement is
well supported by available process algebras.

Communication protocols between agents: Available process al-
gebras are highly effective in this area.

Adaptability to programming: Any formal specification langu-
ages that are developed will need to keep in mind the ease
of converting the formal specification to program code and
as input to model checkers.

Determining whether goals have been met: The goals of each of
the spacecraft are constantly under review. We will need
to be able to specify a method by which the spacecraft will
know when the goals have been met. A modification to X-
Machines may be able to solve this since the goals could be
tracked using X-Machines (effectively finite state machines
with memory).

Method for determining new goals: Once goals have been met,
new goals must be formed. We need to be able to specify a
method for forming these goals.

Model checking: Model checking will help to avoid semantic in-
consistencies in the specifications. Notations employed will
need to be suitable for use as input to a model checker.

Tracking Models: X-Machines have the ability to track the uni-
verse model in memory but need a more robust way to detail
what the model is, how it is created, and how it is modified.

Associating agent actions with priorities and/or frequencies: A
formal method deemed appropriate requires a means of ex-
pressing the probability of certain actions being enabled, and
the frequency with which this will occur.

Predicting emergent behavior: Current approaches are not robust
enough for the purpose of predicting individual and swarm
emergent behavior and will need to be enhanced by greater
use of Probability, Markov Chains, and/or Chaos Theory.

Table 1 illustrates part of the results of the survey for mainstream
formal methods. Table 2 compares a number of the integrated or
combination formal methods surveyed. Table 3 compares meth-
ods that, as reported in the literature, have been applied to model-
ing or specifying swarm-based systems (whether computer-based
swarms, or real swarms in nature).

A significant issue for specifying (and verifying) swarm behavior
is support for analysis of emergent behavior of swarms. The idea
of emergence is well known from biology, economics, and other

scientific areas. It is also prominent in computer science and engi-
neering, but the concept is not so well understood by computer sci-
entists and engineers, although they encounter it regularly. Emer-
gence refers to the fact that “the whole is often greater than the sum
of its parts.” That is, when various components whose behavior is
well understood are combined within a single environment, they of-
ten demonstrate behavior that is unexpected, and/or often cannot be
foreseen or explained from the behavior of any individual compo-
nent. The corollary of this is that making changes to components of
a system of systems, or replacing a sub-system within a system of
systems, may often have unforeseen, unexpected, and completely
unexplained ramifications for both overall system behavior and the
behavior of other subsystems.

Although the survey identified a few formal methods that have
been used to specify swarm-based systems, initially only two for-
mal approaches were found that had been used to analyze the emer-
gent behavior of swarms, namely Weighted Synchronous Calculus
of Communicating Systems (WSCCS) and Artificial Physics [31].
Since the survey was completed, two other approaches that may
prove valuable in analyzing emergent behavior—CommUnity [14]
and CSP2B [5]—have been brought to our attention, although we
have not as yet identified their use with swarm technologies per se.

5.1 Experience specifying swarm behaviors
There has not been significant work on specifying swarm be-

havior. Interestingly, most of the work that has been reported in
the literature has been related to specifying the behavior of swarms
or colonies of insects, and has been performed by biologists with
the assistance of computer scientists using modified formal meth-
ods. The following is a brief description of some specification tech-
niques that have been used for specifying social, swarm, and emer-
gent behavior:

• Weighted Synchronous Calculus of Communicating Systems
(WSCCS), a process algebra, was used by Tofts to model
social insects [34]. WSCCS was also used in conjunction
with a dynamical systems approach for analyzing the non-
linear aspects of social insects [33].

• X-Machines have been used to model cell biology [20, 19],
and modifications, such as Communicating Stream X-Mach-
ines [21] also seem to have potential for specifying swarms.

• Dynamic Emergent System Modeling Language (DESML)
[22], a variant of UML, has been suggested for use in mod-
eling emergent systems.

• Cellular automata [37] have been used to model systems that
exhibit emergent behavior (e.g., land use).

• Artificial Physics [31], which uses physics-based modeling
to gauge emergent behavior, have been used to ensure for-
mation flying as well as other constraints on swarms.

Simulation approaches have also been investigated to determine
emergent behavior, after which a modeling technique is used to
model that behavior. Such approaches do not model emergent be-
havior a priori, instead only after the fact, and were not considered.

5.2 Evaluation of Specification Methods
Based on the results of the survey, four formal methods were

selected to be used for sample specification of part of the ANTS
mission. These methods were: the process algebras CSP [18, 16,
25] and WSCCS [34, 33], X-Machines [21], and Unity Logic [8].



Table 1: Comparison of candidate formal methods for intelligent swarms
Name Concurrency Algorithm Tool Formal Used in Used in

Support Support Support Basis Agent-Based Swarm-Based
Specs. Specs.

Artificial Physics Yes Yes Yes Yes Yes Yes (limited)
(Mathematical)

B No Yes Yes Yes (Set Theory Yes No
& Pred. Logic)

BDI Logic Yes No Yes Yes (Logic) Yes Yes (limited)
CSP Yes No Yes Yes (Algebraic) Yes No
Finite State Machines No Yes Yes Yes (Formal Lang.) Yes No
Game Theory Yes No Yes Yes (Mathematical) Yes Yes
I/O Automata Yes Yes Yes Yes (Formal Lang.) Yes No
KARO Yes No Yes (limited) Yes (Logic) Yes No
Mathematical Analysis Yes No Yes Yes (Mathematical) Yes Yes
Petri Nets Yes No Yes Yes Yes No
Pi Calculus Yes No Yes Yes (Algebraic) Yes No
Real Time Logic Yes No Yes Yes (Logic) No No
SCR No Yes Yes Yes (Formal Lang.) No No
Statecharts Yes No Yes No (Formal Lang.) Yes No
UML Yes Yes Yes No Yes No
X-Machines No Yes No (limited) Yes (Formal Lang.) Yes No
Z No Yes Yes Yes (Set Theory/ Yes No

Pred. Calc.)

Table 2: Comparison of integrated formal methods
Name Concurrency Algorithm Tool Formal Used in Used in

Support Support Support Basis Agent-Based Swarm-Based
Specs. Specs.

Communicating X-Machines Yes Yes No Yes Yes Yes
CSP-OZ Yes Yes No Yes Yes No
Object-Z and Statecharts Yes Yes No Yes Yes No
Temporal B Yes Yes No Yes Yes No
Temporal Petri Nets Yes No No Yes Yes No
Timed Communicating Object Z Yes Yes No Yes Yes No
Timed CSP Yes No Yes Yes Yes No
ZCCS Yes Yes No Yes Yes No



These were used to describe a virtual experiment, described in sec-
tion 4.3.1. CSP was chosen as a baseline specification method
because the team has had significant experience and success [27,
28] in specifying agent-based systems with CSP. WSCCS and X-
Machines were chosen because they have already been used for
specifying emergent behavior by others, apparently with some suc-
cess. Unity Logic was also chosen because it had been successfully
used for specifying concurrent systems and was a logic-based spec-
ification, which offered a c ontrast to the other methods.

DESML, Cellular Automata, Artificial Physics, and simulation
approaches were not used even though they had been used for spec-
ifying or evaluating emergent behavior. DESML, though very in-
teresting, was not used because it had not been used or evaluated
outside of the thesis it was developed under (though we may be re-
visiting it at a future time). Cellular Automata were not selected be-
cause they did not have any built in analysis properties for emergent
behavior and because they have been primarily used for simulating
emergent systems (as described in the previous section). Though
not used for the specification, it too may be revisited to examine
its strengths. Artificial physics, which is very promising, was not
selected because of the newness of the approach and because of the
translation that must be done between physics and software behav-
ior. Lastly, simulation techniques were not used due to the fact that
verification cannot be undertaken using simulation. This is because
there could be emergent or other undesirable behaviors occurring
that are not visible or do not become apparent during a simulation,
but may be there nonetheless. A formal technique is designed to
find exactly these kinds of errors.

6. AN INTEGRATED SWARM
FORMAL METHOD

Integrating the above methods seems to be the best approach for
verifying cooperating swarm-based systems. Integrating the mem-
ory and transition function aspects of X-Machines with the priority
and probability aspects of WSCCS and other methods may pro-
duce a specification method that will allow all the necessary as-
pects for specifying emergent behavior in the ANTS mission and
other swarm-based systems.

The merging of these formal methods is currently being per-
formed. Figure 3 illustrates the proposed integrated formal method.
The approach being taken is to use a conserving integration [32]
of the methods. In this type of formal methods integration, the
base formalisms of the methods are maintained and relationships
between the formalisms are developed to reflect the new formal
method. This approach will preserve the strength of the underlying
methods and allow a seamless specification of the ANTS mission,
and the development of support tools using existing semantics of
the methods.

7. CONCLUSIONS
A brief overview of swarm technologies has been presented with

emphasis on their relevance for potential future NASA missions.
Swarm technologies hold promise for complex exploration and sci-
entific observational missions that require capabilities that would
be unavailable in missions designed around single spacecraft.

NASA is pursuing further development of formal methods tech-
niques and tools that can be applied in the development of swarm-
based systems, to help achieve confidence in their correctness.
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Table 3: Comparison of formal methods used for swarm specifications
Name Concurrency Algorithm Tool Formal Emergent Used in

Support Support Support Basis Behavior Swarm-Based
Analysis Specs.

Cellular Automaton Yes Yes Yes Yes (FSM) No Yes
Com. X-Machines Yes Yes No Yes (Formal Lang.) No Yes
Unity Logic Yes No Yes (limited) Yes (Logic) No Yes
WSCCS Yes No Some (Prob. Yes (Process Alg.) Yes (Markov Yes

Workbench) Chain)
Artificial Physics Yes Yes Yes Yes (Mathematical) Yes Yes (limited)

is a set of (partial) transition functions 
where each transition function maps

⎭
⎬
⎫

⎩
⎨
⎧

=Φ
ocessason

geceiveMessaeSendMessag
Pr,Re

,Re,

MemoryOutputInputMemory ×→×

is a set of (partial) transition functions 
where each transition function maps

⎭
⎬
⎫

⎩
⎨
⎧

=Φ
ocessason

geceiveMessaeSendMessag
Pr,Re

,Re,

MemoryOutputInputMemory ×→×

goces
goces
goces
goces
goces

goces
easoning

easoning
ingCommunicateceive

ingCommunicateceive
ingCommunicateceive

ingCommunicat
ingCommunicat

ingCommunicatingCommunicat

sinPr.nRemediatioProcessing:17
sinPr.RecoveryProcessing:16
sinPr.DiagnosisProcessing:16
sinPr.PredictionProcessing:17
sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17
R.eactiveReasoningR:50

R.eliberatveReasoningD:50
.orMessageErrR:1

.derMessageLeaR:50
.kerMessageWorR:50

.eErrorSendMessag:1
.eLeaderSendMessag:50

.eWorkerSendMessag:50

2

2

2

2

2

2

2

2

1

2

2

1

2

2

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

+

+

+

+

+

+

+

+

+

+

+

+

+

≡

lkklkklk nmnmn +++ +==+ ωωωωω
kkkkk nmmnmn ωωωωω +=+=+ )(

goces
goces
goces
goces
goces

goces
easoning

easoning
ingCommunicateceive

ingCommunicateceive
ingCommunicateceive

ingCommunicat
ingCommunicat

ingCommunicatingCommunicat

sinPr.nRemediatioProcessing:17
sinPr.RecoveryProcessing:16
sinPr.DiagnosisProcessing:16
sinPr.PredictionProcessing:17
sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17
R.eactiveReasoningR:50

R.eliberatveReasoningD:50
.orMessageErrR:1

.derMessageLeaR:50
.kerMessageWorR:50

.eErrorSendMessag:1
.eLeaderSendMessag:50

.eWorkerSendMessag:50

2

2

2

2

2

2

2

2

1

2

2

1

2

2

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

+

+

+

+

+

+

+

+

+

+

+

+

+

≡

lkklkklk nmnmn +++ +==+ ωωωωω
kkkkk nmmnmn ωωωωω +=+=+ )(

otherwise
AGEERROR_MESS

RTH(msg) = EAif
AGEEARTH_MESS

RKER(msg) = WOif
SAGEWORKER_MES

SSENGER(msg) = ME if
MESSAGEMESSENGER_

ADER(msg) = LEif
SAGELEADER_MES

msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

                
              

sender                  
              

sender                  
              

sender                 
              

sender                  
  case      

?._

,,

,,

,,

,,

,,

, →=

otherwise
AGEERROR_MESS

RTH(msg) = EAif
AGEEARTH_MESS

RKER(msg) = WOif
SAGEWORKER_MES

SSENGER(msg) = ME if
MESSAGEMESSENGER_

ADER(msg) = LEif
SAGELEADER_MES

msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

                
              

sender                  
              

sender                  
              

sender                 
              

sender                  
  case      

?._

,,

,,

,,

,,

,,

, →= ),,(' ingCommsTracklModesGoalmemory ′′= ),,(' ingCommsTracklModesGoalmemory ′′=

217ProcessingRemediation

216ProcessingRecovery

216ProcessingDiagnosis

217ProcessingPrediction

217ProcessingGeneration

217ProcessingSortingAndStorage

Processing

250ReasoningReactive

250ReasoningDeliberatve
Reasoning

11ReceiveMessageError

250ReceiveMessageLeader

250ReceiveMessageWorker

11SendMessageError

250SendMessageLeader

250SendMessageWorker

Communicating

Identity

pfActions leading to the agent 
stateAgent State

217ProcessingRemediation

216ProcessingRecovery

216ProcessingDiagnosis

217ProcessingPrediction

217ProcessingGeneration

217ProcessingSortingAndStorage

Processing

250ReasoningReactive

250ReasoningDeliberatve
Reasoning

11ReceiveMessageError

250ReceiveMessageLeader

250ReceiveMessageWorker

11SendMessageError

250SendMessageLeader

250SendMessageWorker

Communicating

Identity

pfActions leading to the agent 
stateAgent State

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

5.5.00
25.25.5.0
25.25.5.0
25.25.5.0

P

Communicating

Reasoning

Processing
Initial 
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25 Communicating

Reasoning

Processing
Initial 
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

5.5.00
25.25.5.0
25.25.5.0
25.25.5.0

P

Communicating

Reasoning

Processing
Initial 
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25 Communicating

Reasoning

Processing
Initial 
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25

[Processing] SendMessage (Leader, Worker) [Communicating]

[Reasoning] SendMessage (Leader,Worker)[Communicating]

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

[Processing] SendMessage (Leader, Worker) [Communicating]

[Reasoning] SendMessage (Leader,Worker)[Communicating]

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

Swarm Formal Method Model and Outline

Figure 3: Proposed integrated formal method.



Advanced Technology for Natural Resource Management,
Toronto, Canada, September 1994.

[16] M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal
Development in CSP. International Series in Software
Engineering. McGraw-Hill International, London, UK, 1995.

[17] M. G. Hinchey, J. L. Rash, W. F. Truszkowski, C. A. Rouff,
and R. Sterrit. Autonomous and autonomic swarms. In Proc.
The 2005 International Conference on Software Engineering
Research and Practice (SERP’05), pages 36–42, Las Vegas,
Nevada, USA, 27 June 2005. CSREA Press.

[18] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall International Series in Computer Science.
Prentice Hall International, Englewood Cliffs, NJ, 1985.

[19] W. M. L. Holcombe. Mathematical models of cell
biochemistry. Technical Report CS-86-4, Sheffield
University, UK, 1986.

[20] W. M. L. Holcombe. Towards a formal description of
intracellular biochemical organization. Technical Report
CS-86-1, Sheffield University, UK, 1986.

[21] W. M. L. Holcombe. X-Machines as a basis for system
specification. Software Engineering, 3(2):69–76, 1988.

[22] J. R. Kiniry. The specification of dynamic distributed
component systems. Master’s thesis, California Institute of
Technology, 1998.

[23] F. Luna and B. Stefansson. Economic Simulations in Swarm:
Agent-Based Modelling and Object Oriented Programming.
Kluwer Academic Publishers, 2000.

[24] C. W. Reynolds. Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics, 21(4):25–34, 1987.

[25] M. L. Rilee, S. A. Boardsen, M. K. Bhat, and S. A. Curtis.
Onboard science software enabling future space science and
space weather missions. In Proc. 2002 IEEE Aerospace
Conference, Big Sky, Montana, March 2002.

[26] C. Rouff, A. Vanderbilt, M. Hinchey, W. Truszkowski, and
J. Rash. Properties of a formal method for prediction of
emergent behaviors in swarm-based systems. In Proc. 2nd
IEEE International Conference on Software Engineering and
Formal Methods, Beijing, China, September 2004.

[27] C. A. Rouff, J. L. Rash, and M. G. Hinchey. Experience
using formal methods for specifying a multi-agent system. In
Proc. Sixth IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2000), Tokyo, Japan,
2000. IEEE Computer Society Press, Los Alamitos, Calif.

[28] C. A. Rouff, W. F. Truszkowski, M. G. Hinchey, and J. L.
Rash. Verification of NASA emergent systems. In Proc. 9th
IEEE International Conference on Engineering of Complex
Computer Systems, Florence, Italy, April 2004. IEEE
Computer Society Press, Los Alamitos, Calif.

[29] C. A. Rouff, W. F. Truszkowski, J. L. Rash, and M. G.
Hinchey. A survey of formal methods for intelligent swarms.
Technical Report TM-2005-212779, NASA Goddard Space
Flight Center, Greenbelt, Maryland, 2005.

[30] M. Savage and M. Askenazi. Arborscapes: A swarm-based
multi-agent ecological disturbance model. Working paper
98-06-056, Santa Fe Institute, Santa Fe, New Mexico, 1998.

[31] W. M. Spears and D. F. Gordon. Using artificial physics to
control agents. In Proc. IEEE International Conference on
Information, Intelligence, and Systems, Charlotte, North
Carolina, November 1999.

[32] C. Suhl. RT-Z: An integration of Z and Timed CSP. In Proc.
1st International Conference on Integrated Formal Methods
(IFM99), York, United Kingdom, June 1999.

[33] D. J. T. Sumpter, G. B. Blanchard, and D. S. Broomhead.
Ants and agents: a process algebra approach to modelling ant
colony behaviour. Bulletin of Mathematical Biology,
63(5):951–980, September 2001.

[34] C. Tofts. Describing social insect behavior using process
algebra. Transactions on Social Computing Simulation,
pages 227–283, 1991.

[35] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff.
NASA’s swarm missions: The challenge of building
autonomous software. IEEE IT Professional, 6(5):47–52,
September/October 2004.

[36] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A.
Rouff. Autonomous and autonomic systems: A paradigm for
future space exploration missions. IEEE Transactions on
Systems, Man and Cybernetics, Part C, 2006 (to appear).

[37] J. von Neumann. Theory of Self-Reproducing Automata.
University of Illinois Press, Urbana, Illinois, 1996.


